The Complex Propagation

Constant γ

Recall that the activity along a transmission line can be expressed in terms of two functions, functions that we have described as wave functions:

$$
\begin{aligned}
& V^{+}(z)=V_{0}^{+} e^{-\gamma z} \\
& V^{-}(z)=V_{0}^{-} e^{+\gamma z}
\end{aligned}
$$

where γ is a complex constant that describe the properties of a transmission line. Since γ is complex, we can consider both its real and imaginary components.

$$
\gamma=\sqrt{(R+j \omega L)(G+j \omega C)} \doteq \alpha+j \beta
$$

where $\alpha=\operatorname{Re}\{\gamma\}$ and $\beta=\operatorname{Im}\{\gamma\}$. Therefore, we can write:

$$
V^{+}(z)=V_{0}^{+} e^{-\gamma z}=V_{0}^{+} e^{-(\alpha+j \beta) z}=V_{0}^{+} e^{-\alpha z} e^{-j \beta z}
$$

Q: What are these constants α and β ? What do they physically represent?

A: Remember, a complex value can be expressed in terms of its magnitude and phase. For example:

$$
V_{0}^{+}=\left|V_{0}^{+}\right| e^{j \phi_{0}^{+}}
$$

Likewise:

$$
V^{+}(z)=\left|V^{+}(z)\right| e^{j \phi^{+}(z)}
$$

And since:

$$
\begin{aligned}
V^{+}(z) & =V_{0}^{+} e^{-\alpha z} e^{-j \beta z} \\
& =\left|V_{0}^{+}\right| e^{j \phi t} e^{-\alpha z} e^{-j \beta z} \\
& =\left|V_{0}^{+}\right| e^{-\alpha z} e^{j\left(\phi t^{+}-\beta z\right)}
\end{aligned}
$$

we find:

$$
\phi^{+}(\boldsymbol{z})=\phi_{0}^{+}-\beta \boldsymbol{z}
$$

It is evident that $e^{-\alpha z}$ alone determines the magnitude of wave $V^{+}(z)=V_{0}^{+} e^{-\gamma z}$ as a function of position z.

Therefore, α expresses the attenuation of the signal due to the loss in the transmission line. The larger the value of α, the greater the exponential attenuation.

Q: So what is the constant β ? What does it physically mean?
A: Recall

$$
\phi^{+}(\boldsymbol{z})=\phi_{0}^{+}-\beta \boldsymbol{z}
$$

represents the relative phase of wave $V^{+}(z)$; a function of transmission line position z. Since phase ϕ is expressed in radians, and z is distance (in meters), the value β must have units of:

$$
\beta=\frac{\phi}{z} \quad \frac{\text { radians }}{\text { meter }}
$$

Thus, if the value β is small, we will need to move a significant distance Δz down the transmission line in order to observe a change in the relative phase of the oscillation.

Conversely, if the value β is large, a significant change in relative phase can be observed if traveling a short distance $\Delta z_{2 \pi}$ down the transmission line.

Q: How far must we move along a transmission line in order to observe a change in relative phase of 2π radians?

A: We can easily determine this distance ($\Delta z_{2 \pi}$, say) from the transmission line characteristic β.

$$
2 \pi=\phi\left(z+\Delta z_{2 \pi}\right)-\phi(z)=\beta \Delta z_{2 \pi}
$$

or, rearranging:

$$
\Delta z_{2 \pi}=\frac{2 \pi}{\beta} \quad \Rightarrow \quad \beta=\frac{2 \pi}{\Delta z_{2 \pi}}
$$

The distance $\Delta z_{2 \pi}$ over which the relative phase changes by 2π radians, is more specifically known as the wavelength λ of the propagating wave (i.e., $\lambda \doteq \Delta z_{2 \pi}$):

$$
\lambda=\frac{2 \pi}{\beta} \quad \Rightarrow \quad \beta=\frac{2 \pi}{\lambda}
$$

The value β is thus essentially a spatial frequency, in the same way that ω is a temporal frequency:

$$
\omega=\frac{2 \pi}{T}
$$

Note T is the time required for the phase of the oscillating signal to change by a value of 2π radians, i.e.:

$$
\omega T=2 \pi
$$

And the period of a sinewave, and related to its frequency in Hertz (cycles/second) as:

$$
T=\frac{2 \pi}{\omega}=\frac{1}{f}
$$

Compare these results to:

$$
\begin{array}{lll}
\beta=\frac{2 \pi}{\lambda} & 2 \pi=\beta \lambda & \lambda=\frac{2 \pi}{\beta}
\end{array}
$$

Q: So, just how fast does this wave propagate down a transmission line?

We describe wave velocity in terms of its phase velocity-in other words, how fast does a specific value of absolute phase ϕ seem to propagate down the transmission line.

Since velocity is change in distance with respect to time, we need to first express our propagating wave in its real form:

$$
\begin{aligned}
v^{+}(z, t) & =\operatorname{Re}\left\{V^{+}(z) e^{-j \omega t}\right\} \\
& =\left|V_{0}^{+}\right| \cos \left(\omega t-\beta z+\phi_{0}^{+}\right)
\end{aligned}
$$

Thus, the absolute phase is a function of both time and frequency:

$$
\phi^{+}(\boldsymbol{z}, \boldsymbol{t})=\omega t-\beta \boldsymbol{z}+\phi_{0}^{+}
$$

Now let's set this phase to some arbitrary value of ϕ_{c} radians.

$$
\omega t-\beta \boldsymbol{z}+\phi_{0}^{+}=\phi_{c}
$$

For every time t, there is some location z on a transmission line that has this phase value ϕ_{c}. That location is evidently:

$$
z=\frac{\omega t+\phi_{0}^{+}-\phi_{c}}{\beta}
$$

Note as time increases, so to does the location z on the line where $\phi^{+}(z, t)=\phi_{c}$.

The velocity v_{p} at which this phase point moves down the line can be determined as:

$$
v_{p}=\frac{d z}{d t}=\frac{d\left(\frac{\omega t+\phi_{0}^{+}-\phi_{c}}{\beta}\right)}{d t}=\frac{\omega}{\beta}
$$

This wave velocity is the velocity of the propagating wave!
Note that the value:

$$
\frac{v_{p}}{\lambda}=\frac{\omega}{\beta} \frac{\beta}{2 \pi}=\frac{\omega}{2 \pi}=f
$$

and thus we can conclude that:

$$
v_{p}=f \lambda
$$

as well as:

$$
\beta=\frac{\omega}{v_{p}}
$$

Q: But these results were derived for the $V^{+}(z)$ wave; what about the other wave $V^{-}(z)$?

A: The results are essentially the same, as each wave depends on the same value β.

The only subtle difference comes when we evaluate the phase velocity. For the wave $V^{-}(z)$, we find:

$$
\phi^{-}(\boldsymbol{z}, t)=\omega t+\beta \boldsymbol{z}+\phi_{0}^{-}
$$

Note the plus sign associated with βz !
We thus find that some arbitrary phase value will be located at location:

$$
z=\frac{-\phi_{0}^{-}+\phi_{c}-\omega t}{\beta}
$$

Note now that an increasing time will result in a decreasing value of position z. In other words this wave is propagating in the direction of decreasing position z-in the opposite direction of the $V^{+}(z)$ wave!

This is further verified by the derivative:

$$
v_{p}=\frac{d z}{d t}=\frac{d\left(\frac{-\phi_{0}^{-}+\phi_{c}-\omega t}{\beta}\right)}{d t}=-\frac{\omega}{\beta}
$$

Where the minus sign merely means that the wave propagates in the $-z$ direction. Otherwise, the wavelength and velocity of the two waves are precisely the same!

