The Complex Propagation
Constant ¥

Recall that the activity along a transmission line can be
expressed in terms of two functions, functions that we have
described as wave functions:

Viiz)= VW e”*
Viz)=V, e”*
where yis a complex constant that describe the properties of a

transmission line. Since ¥ is complex, we can consider both its
real and imaginary components.

7/=\/(R+ja)L)(6+J'a)C') Za+ jB

where o =Re{y} and f=Im{y}. Therefore, we can write:
V+(Z) = VO+ e’ = [/O+ e_(‘“-/ﬁ)z s [/O+ e %% e—j,[;’z

Q: What are these constants o and 2 What do they
physically represent?



A: Remember, a complex value can be expressed in terms of its
magnitude and phase. For example:

= |e®
Likewise:
Viz)=|V'(z) "™
And since:
V+(Z) _ Vo+ e—az e—Jﬁz
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we find:

V+(z)‘ _ VO+ i ¢+(Z) = ¢5 —ﬁz

It is evident that e ““alone determines the magnitude of wave
V'(z)= V¥, e’* as a function of position z
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Therefore, a expresses the attenuation of the signal due to
the loss in the transmission line. The larger the value of o, the
greater the exponential attenuation.

Q: So what is the constant p? What does it physically mean?

A: Recall
¢ (2)=¢y — B2

represents the relative phase of wave VV°(z).; a function of
transmission line position z. Since phase ¢ is expressed in

radians, and z is distance (in meters), the value Amust have

units of:
Y, radians

ﬂz_

Z meter

Thus, if the value g is small, we will need to move a significant
distance Az down the transmission line in order to observe a
change in the relative phase of the oscillation.

Conversely, if the value g is large, a significant change in
relative phase can be observed if traveling a short distance
Az, down the transmission line.

Q: How far must we move along a transmission line in order to
observe a change in relative phase of 2r radians?

A: We can easily determine this distance (Az,_, say) from the
transmission line characteristic S.

2r=¢(z+Az,)-¢(z) = Az,



or, rearranging:

2 2
AZZH = —72- — ﬂ = a
AZZﬂ'

The distance Az, over which the relative phase changes by 27

radians, is more specifically known as the wavelength 1 of the
propagating wave (i.e., 1 = Az, ):

The value g is thus essentially a spatial frequency, in the same
way that o is a temporal frequency:

Note T is the time required for the phase of the oscillating
signal to change by a value of 27 radians, i.e.:

ol =2r

And the period of a sinewave, and related to its frequency in
Hertz (cycles/second) as:



Compare these results to:

b =— 2n = A A=

Q: So, just how fast does this wave propagate down a
transmission line?

We describe wave velocity in terms of its phase velocity—in
other words, how fast does a specific value of absolute phase ¢
seem to propagate down the transmission line.

Since velocity is change in distance with respect to time, we
need to first express our propagating wave in its real form:

vi(z,t)=Re{V' (z)e "}
V5| cos (ot — Bz + ¢7 )

Thus, the absolute phase is a function of both time and
frequency:

¢ (2,1)=of =Sz +d¢,
Now let's set this phase to some arbitrary value of ¢. radians.

a)f_ﬂ2+¢g :¢c

For every time 7, there is some location zon a transmission line
that has this phase value ¢,. That location is evidently:



Z:a)f+¢g_¢c
B

Note as time increases, so to does the location zon the line
where ¢'(z,1)=4,.

The velocity v, at which this phase point moves down the line
can be determined as:

a)f+¢g_¢c
az d( Yo} j w

vV = = =

Fodt dr B

This wave velocity is the velocity of the propagating wave!

Note that the value:

_o B _0 _g
A B2r 2rx
and thus we can conclude that:
v, = A
as well as:
(0]
p=—
%

Q: But these results were derived for the V'(z) wave; what
about the other wave V (z)?



A: The results are essentially the same, as each wave depends
on the same value p.

The only subtle difference comes when we evaluate the phase
velocity. For the wave VV°(z), we find:

¢ (z,t)=0t+ fz+¢,
Note the plus sign associated with gz!

We thus find that some arbitrary phase value will be located at
location:
_ =t ¢ —of

B
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Note now that an increasing time will result in a decreasing
value of position z. In other words this wave is propagating in
the direction of decreasing position z—in the opposite direction
of the V*(z) wavel!

This is further verified by the derivative:

_¢O_ +¢c —of
daz d( yis j w

T gr dt )

Where the minus sign merely means that the wave propagates in
the -zdirection. Otherwise, the wavelength and velocity of the
two waves are precisely the samel



