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The Complex Propagation 
Constant γ 

 
Recall that the activity along a transmission line can be 
expressed in terms of two functions, functions that we have 
described as wave functions: 
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where γ is a complex constant that describe the properties of a 
transmission line.  Since γ is complex, we can consider both its 
real and imaginary components. 
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where { } { }Re  and Imα βγ γ= = .  Therefore, we can write: 
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Q:  What are these constants α and β?  What do they 
physically represent? 
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A:  Remember, a complex value can be expressed in terms of its 
magnitude and phase. For example: 
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Likewise: 
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And since: 
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we find: 
 

( ) ( )0 0
zV z V e z zα φ φ β++ + − +== −  

 
It is evident that ze −α alone determines the magnitude of wave 

( ) 0
zV z V e γ+ + −=  as a function of position z. 
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Therefore, α  expresses the attenuation of the signal due to 
the loss in the transmission line. The larger the value of α, the 
greater the exponential attenuation. 
 
Q:  So what is the constant β? What does it physically mean?  
 
A:  Recall 

( ) 0z zφ φ β+ += −  
 

represents the relative phase of wave ( )V z+ ; a function of 
transmission line position z.  Since phase φ  is expressed in 
radians, and z is distance (in meters), the value β must have 
units of: 

radians     
meterz

=
φβ  

 
Thus, if the value β  is small, we will need to move a significant 
distance zΔ  down the transmission line in order to observe a 
change in the relative phase of the oscillation. 
 
 Conversely, if the value β  is large, a significant change in 
relative phase can be observed if traveling a short distance 

2z πΔ  down the transmission line.  
 
Q:  How far must we move along a transmission line in order to 
observe a change in relative phase of 2π radians? 
 
A: We can easily determine this distance ( 2z πΔ , say) from the 
transmission line characteristic β.  
 

2 22 ( ) ( ) z z z zπ ππ φ φ β= + Δ − = Δ  
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or,  rearranging: 
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The distance 2z πΔ over which the relative phase changes by 2π  
radians, is more specifically known as the  wavelength λ  of the 
propagating wave (i.e., 2z πλ Δ ):  
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The value β  is thus essentially a spatial frequency, in the same 
way that ω  is a temporal frequency: 
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Note T  is the time required for the phase of the oscillating 
signal to change by a value of 2π  radians, i.e.: 
 

2Tω π=  
 

And  the period of a sinewave, and related to its frequency in 
Hertz (cycles/second) as: 
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Compare these results to: 
 

2 22π πβ π βλ λ
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= = =  

 
 

Q:  So, just how fast does this wave propagate down a 
transmission line? 
 
We describe wave velocity in terms of its phase velocity—in 
other words, how fast does a specific value of absolute phase φ  
seem to propagate down the transmission line. 
 
Since velocity is change in distance with respect to time, we 
need to first express our propagating wave in its real form: 
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Thus, the absolute phase is a function of both time and 
frequency: 

( ) 0z ,t t zφ ω β φ+ += − +  
 

Now let’s set this phase to some arbitrary value of cφ  radians. 
 

0 ct zω β φ φ+− + =  
 

For every time t, there is some location z on a transmission line 
that has this phase value cφ .  That location is evidently: 
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Note as time increases, so to does the location z on the line 
where ( ) cz ,tφ φ+ = . 
 
The velocity vp  at which this phase point moves down the line 
can be determined as: 
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This wave velocity is the velocity of the propagating wave! 
 
Note that the value: 
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and thus we can conclude that: 
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as well as: 

pv
ω
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Q:  But these results were derived for the ( )V z+  wave; what 
about the other wave ( )V z− ? 
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A:  The results are essentially the same, as each wave depends 
on the same value β. 
 
The only subtle difference comes when we evaluate the phase 
velocity.  For the wave ( )V z− , we find: 
 

( ) 0z ,t t zφ ω β φ− −= ++  
 

Note the plus sign associated with βz ! 
 
We thus find that some arbitrary phase value will be located at 
location: 
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Note now that an increasing time will result in a decreasing 
value of position z .  In other words this wave is propagating in 
the direction of decreasing position z—in the opposite direction 
of the ( )V z+  wave!  
 
This is further verified by the derivative:  
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Where the minus sign merely means that the wave propagates in 
the –z direction.  Otherwise, the wavelength and velocity of the 
two waves are precisely the same!  


